Research paper accepted by Structural and Multidisciplinary Optimization
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared.
Research paper accepted by Structural and Multidisciplinary Optimization
As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This second paper presents a literature review of key enabling technologies of digital twins, with an emphasis on uncertainty quantification, optimization methods, open source datasets and tools, major findings, challenges, and future directions. Discussions focus on current methods of uncertainty quantification and optimization and how they are applied in different dimensions of a digital twin. Additionally, this paper presents a case study where a battery digital twin is constructed and tested to illustrate some of the modeling and twinning methods reviewed in this two-part review. Code and preprocessed data for generating all the results and figures presented in the case study are available on GitHub.
Research paper accepted by Reliability Engineering and Systems Safety
In this paper, we develop a generic physics-informed neural network (PINN)-based framework to assess the reliability of multi-state systems (MSSs). The proposed framework follows a two-step procedure. In the first step, we recast the reliability assessment of MSS as a machine learning problem using the framework of PINN. A feedforward neural network with two individual loss groups is constructed to encode the initial condition and the state transitions governed by ordinary differential equations in MSS, respectively. Next, we tackle the problem of high imbalance in the magnitudes of back-propagated gradients from a multi-task learning perspective and establish a continuous latent function for system reliability assessment. Particularly, we regard each element of the loss function as an individual learning task and project a task’s gradient onto the norm plane of any other task with a conflicting gradient by taking the projecting conflicting gradients (PCGrad) method. We demonstrate the applications of the proposed framework for MSS reliability assessment in a variety of scenarios, including time-independent or dependent state transitions, where system scales increase from small to medium. The computational results indicate that PINN-based framework reveals a promising performance in MSS reliability assessment and incorporation of PCGrad into PINN substantially improves the solution quality and convergence speed of the algorithm.