Research paper accepted by Journal of Manufacturing Process

Selective laser melting (SLM) is a commonly used technique in additive manufacturing to produce metal components with complex geometries and high precision. However, the poor process reproducibility and unstable product reliability has hindered its wide adoption in practice. Hence, there is a pressing demand for in-situ quality monitoring and real-time process control. In this paper, a feature-level multi-sensor fusion approach is proposed to combine acoustic emission signals with photodiode signals to realize in-situ quality monitoring for intelligence-driven production of SLM. An off-axial in-situ monitoring system featuring a microphone and a photodiode is developed to capture the process signatures during the building process. According to the 2D porosity and 3D density measurements, the collected acoustic and optical signals are grouped into three categories to indicate the quality of the produced parts. In consideration of the laser scanning information, an approach to transform the 1D signal to 2D image is developed. The converted images are then used to train a convolutional neural network so as to extract and fuse the features derived from the two individual sensors. In comparison with several baseline models, the proposed multi-sensor fusion approach achieves the best performance in quality monitoring.

Prof. Pascal Van Hentenryck gave a talk on Fusing AI and Optimization for Engineering

This talk reviews new methodological developments in fusing data science, machine learning, and optimization, as well as their applications in energy systems, mobility, supply chains, fair recommendations. It highlights the symbiotic relationships between deep learning, reinforcement learning, and optimization, through optimization proxies and end-to-end learning.

Research paper accepted by Structural and Multidisciplinary Optimization

As an emerging technology in the era of Industry 4.0, digital twin is gaining unprecedented attention because of its promise to further optimize process design, quality control, health monitoring, decision and policy making, and more, by comprehensively modeling the physical world as a group of interconnected digital models. In a two-part series of papers, we examine the fundamental role of different modeling techniques, twinning enabling technologies, and uncertainty quantification and optimization methods commonly used in digital twins. This first paper presents a thorough literature review of digital twin trends across many disciplines currently pursuing this area of research. Then, digital twin modeling and twinning enabling technologies are further analyzed by classifying them into two main categories: physical-to-virtual, and virtual-to-physical, based on the direction in which data flows. Finally, this paper provides perspectives on the trajectory of digital twin technology over the next decade, and introduces a few emerging areas of research which will likely be of great use in future digital twin research. In part two of this review, the role of uncertainty quantification and optimization are discussed, a battery digital twin is demonstrated, and more perspectives on the future of digital twin are shared.