Research paper accepted by Journal of Mechanical Design

Identifying a reliable path in uncertain environments is essential for designing reliable off-road autonomous ground vehicles (AGV) considering post-design operations. This paper presents a novel bio-inspired approach for model-based multi-vehicle mission planning under uncertainty for off-road AGVs subjected to mobility reliability constraints in dynamic environments. A physics-based vehicle dynamics simulation model is first employed to predict vehicle mobility (i.e., maximum attainable speed) for any given terrain and soil conditions. Based on physics-based simulations, the vehicle state mobility reliability in operation is then analyzed using an adaptive surrogate modeling method to overcome the computational challenges in mobility reliability analysis by adaptively constructing a surrogate. Subsequently, a bio-inspired approach called Physarum-based algorithm is used in conjunction with a navigation mesh to identify an optimal path satisfying a specific mobility reliability requirement. The developed Physarum-based framework is applied to reliability-based path planning for both a single-vehicle and multiple-vehicle scenarios. A case study is used to demonstrate the efficacy of the proposed methods and algorithms. The results show that the proposed framework can effectively identify optimal paths for both scenarios of a single and multiple vehicles. The required computational time is less than the widely used Dijkstra-based method.

ML model in production at FedEx Express

FedEx Express handles more than 6.5 million packages everyday in nearly 220 countries and regions. Customers expect timely and accurate information on their package deliveries. To address customers demand, I have worked with teams across different departments (e.g., IT, market) and colleagues in the Operations Research and Spatial Analytics (ORSA) to develop and deploy a machine learning-based solution to produce customized expected delivery time windows for millions of packages every day. I am proud that the deployed ML model has been in production with reliable performance since March, 2021.

Research paper accepted by Safety Science

In this paper, we apply a set of data-mining and sequential deep learning techniques to accident investigation reports published by the National Transportation Safety Board (NTSB) in support of the prognosis of adverse events. Our focus is on learning with text data that describes the sequences of events. NTSB creates post-hoc investigation reports which contain raw text narratives of their investigation and their corresponding concise event sequences. Classification models are developed for passenger air carriers, that take either an observed sequence of events or the corresponding raw text narrative as input and make predictions regarding whether an accident or an incident is the likely outcome, whether the aircraft would be damaged or not and whether any fatalities are likely or not. The classification models are developed using Word Embedding and the Long Short-term Memory (LSTM) neural network. The proposed methodology is implemented in two steps: (i) transform the NTSB data extracts into labeled dataset for building supervised machine learning models; and (ii) develop deep learning (DL) models for performing prognosis of adverse events like accidents, aircraft damage or fatalities. We also develop a prototype for an interactive query interface for end-users to test various scenarios including complete or partial event sequences or narratives and get predictions regarding the adverse events. The development of sequential deep learning models facilitates safety professionals in auditing, reviewing, and analyzing accident investigation reports, performing what-if scenario analyses to quantify the contributions of various hazardous events to the occurrence of aviation accidents/incidents.