Research paper accepted by IEEE Transactions on Industrial Informatics

Accurate and reliable prediction of bearing remaining useful life (RUL) is crucial to the prognostics and health management (PHM) of rotation machinery. Despite the rapid progress of data-driven methods, the generalizability of data-driven models remains an open issue to be addressed. In this paper, we tackle this challenge by resolving the feature misalignment problem that arises in extracting features from the raw vibration signals. Towards this goal, we introduce a logarithmic cumulative transformation (LCT) operator consisting of cumulative, logarithmic, and another cumulative transformation for feature extraction. In addition, we propose a novel method to estimate the reliability associated with each RUL prediction by integrating a linear regression model and an auxiliary exponential model. The linear regression model rectifies bias from neural network’s point predictions while the auxiliary exponential model fits the differential slopes of the linear models and generates the upper and lower bounds for building the reliability indicator. The proposed approach comprised of LCT, an attention GRU-based encoder-decoder network, and reliability evaluation is validated on the FEMETO-ST dataset. Computational results demonstrate the superior performance of the proposed approach several other state-of-the-art methods.

Research paper accepted by Reliability Engineering and Systems Safety

Risk management often involves retrofit optimization to enhance the performance of buildings against extreme events but may result in huge upfront mitigation costs. Existing stochastic optimization frameworks could be computationally expensive, may require explicit programming, and are often not intelligent. Hence, an intelligent risk optimization framework is proposed herein for building structures by developing a deep reinforcement learning-enabled actor-critic neural network model. The proposed framework is divided into two parts including (1) a performance-based environment to assess mitigation costs and uncertain future consequences under hazards and (2) a deep reinforcement learning-enabled risk optimization model for performance enhancement. The performance-based environment takes mitigation alternatives as input and provides consequences and retrofit costs as output by utilizing several steps, including hazard assessment, damage assessment, and consequence assessment. The risk optimization is performed by integrating performance-based environment with actor-critic deep neural networks to simultaneously reduce retrofit costs and uncertain future consequences given seismic hazards. For illustration, the proposed framework is implemented on a portfolio with numerous building structures to demonstrate the new paradigm for intelligent risk optimization. Also, the performance of the proposed method is compared with genetic optimization, deep Q-networks, and proximal policy optimization.

Research paper accepted by Knowledge-Based Systems

Principled quantification of predictive uncertainty in neural networks (NNs) is essential to safeguard their applications in high-stakes decision settings. In this paper, we develop a differentiable mathematical formulation to quantify the uncertainty in NN prediction using prediction intervals (PIs). The formulated optimization problem is differentiable and compatible with the built-in gradient descent optimizers in prevailing deep learning platforms, and two performance metrics composed of prediction interval coverage probability (PICP) and mean prediction interval width (MPIW) are considered in the construction of PIs. Different from existing methods, the developed methodology features four salient characteristics. Firstly, we design two distance-based functions that are differentiable to impose constraints associated with the target coverage in PI construction, where PICP is prioritized explicitly over MPIW in the devised composite loss function. Next, we adopt a shared-bottom NN architecture with intermediate layers to separate the learning of shared and task-specific feature representations along the construction of lower and upper bounds. Thirdly, we leverage the projection of conflicting gradients (PCGrad) to mitigate interference of gradients associated with the two individual learning tasks so as to increase the convergence stability and solution quality. Finally, we design a customized early stopping mechanism to monitor PICP and MPIW simultaneously for the purpose of selecting the set of parameters that not only meets the target coverage but also has a minimal MPIW as the ultimate NN parameters. A broad range of datasets are used to rigorously examine the performance of the developed methodology. Computational results suggest that the developed method significantly outperforms the classic LUBE method across the nine datasets by reducing the PI width by 31.26% on average. More importantly, it achieves competitive results compared to the other three state-of-the-art methods by outperforming them on four out of ten datasets. An ablation study is used to explicitly demonstrate the benefit of shared-bottom NN architecture in the construction of PIs.

Research paper accepted by Reliability Engineering and Systems Safety

Physics-Informed Neural Network (PINN) is a special type of deep learning model that encodes physical laws in the form of partial differential equations as a regularization term in the loss function of neural network. In this paper, we develop a principled uncertainty quantification approach to characterize the model uncertainty of PINN, and the estimated uncertainty is then exploited as an instructive indicator to identify collocation points where PINN produces a large prediction error. To this end, this paper seamlessly integrates spectral-normalized neural Gaussian process (SNGP) into PINN for principled and accurate uncertainty quantification. In the first step, we apply spectral normalization on the weight matrices of hidden layers in the PINN to make the data transformation from input space to the latent space distance-preserving. Next, the dense output layer of PINN is replaced with a Gaussian process to make the quantified uncertainty distance-sensitive. Afterwards, to examine the performance of different UQ approaches, we define several performance metrics tailored to PINN for assessing distance awareness in the measured uncertainty and the uncertainty-informed error detection capability. Finally, we employ three representative physical problems to verify the effectiveness of the proposed method in uncertainty quantification of PINN and compare the developed approach with Monte Carlo (MC) dropout using the developed performance metrics. Computational results suggest that the proposed approach exhibits a superior performance in improving the prediction accuracy of PINN and the estimated uncertainty serves as an informative indicator to detect PINN’s prediction failures.

Research paper accepted by IEEE Transactions on Instrumentation and Measurement

Deep learning has achieved remarkable success in the field of bearing fault diagnosis. However, this success comes with larger models and more complex computations, which cannot be transferred into industrial fields requiring models to be of high speed, strong portability, and low power consumption. In this paper, we propose a lightweight and deployable model for bearing fault diagnosis, referred to as BearingPGA-Net, to address these challenges. Firstly, aided by a well-trained large model, we train BearingPGA-Net via decoupled knowledge distillation. Despite its small size, our model demonstrates excellent fault diagnosis performance compared to other lightweight state-of-the-art methods. Secondly, we design an FPGA acceleration scheme for BearingPGA-Net using Verilog. This scheme involves the customized quantization and designing programmable logic gates for each layer of BearingPGA-Net on the FPGA, with an emphasis on parallel computing and module reuse to enhance the computational speed. To the best of our knowledge, this is the first instance of deploying a CNN-based bearing fault diagnosis model on an FPGA. Experimental results reveal that our deployment scheme achieves over 200 times faster diagnosis speed compared to CPU, while achieving a lower-than-0.4% performance drop in terms of F1, Recall, and Precision score on our independently-collected bearing dataset. Our code is available at https://github.com/asdvfghg/BearingPGA-Net.

Research paper accepted by IEEE Transactions on Reliability

As safety is the top priority in mission-critical engineering applications, uncertainty quantification emerges as a linchpin to the successful deployment of AI models in these high-stakes domains. In this paper, we seamlessly encode a simple and principled uncertainty quantification module Spectral-normalized Neural Gaussian Process (SNGP) into GoogLeNet to detect various defects in steel wire ropes (SWRs) accurately and reliably. To this end, the developed methodology consists of three coherent steps. In the first step, raw Magnetic Flux Leakage (MFL) signals in waveform associated with normal and defective SWRs that are manifested in the number of broken wires are collected via a dedicated experimental setup. Next, the proposed approach utilizes Gramian Angular Field to represent the MFL signal in 1-D time series as 2-D images while preserving key spatial and temporal structures in the data. Thirdly, built atop the backbone of GoogLeNet, we systematically integrate SNGP by adding the spectral normalization (SN) layer to normalize the weights and replacing the output layers with a Gaussian process (GP) in the main network and auxiliary classifiers of GoogLeNet accordingly, where SN enables to preserve the distance in data transformation and GP makes the output layer of neural network distance aware when assigning uncertainty. Comprehensive comparisons with the state-of-the-art models highlight the advantages of the developed methodology in classifying SWR defects and identifying out-of-distribution (OOD) SWR instances. In addition, a thorough ablation study is performed to quantitatively illustrate the significant role played by SN and GP in the principledness of the estimated uncertainty towards detecting SWR instances with varying OODness.

Research paper accepted by Mechanical Systems and Signal Processing

On top of machine learning (ML) models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Toward this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage (case study 1) and the remaining useful life prediction of turbofan engines (case study 2).

Research paper accepted by IEEE Internet of Things Journal

Graph neural networks (GNNs) have transformed network analysis, leading to state-of-the-art performance across a variety of tasks. Especially, GNNs are increasingly been employed as detection tools in the AIoT environment in various security applications. However, GNNs have also been shown vulnerable to adversarial graph perturbation. We present the first approach for certifying robustness of general GNNs against attacks that add or remove graph edges either at training or prediction time. Extensive experiments demonstrate that our approach significantly outperforms prior art in certified robust predictions. In addition, we show that a non-certified adaptation of our method exhibits significantly better robust accuracy against state-of-the-art attacks that past approaches. Thus, we achieve both the best certified bounds and best practical robustness of GNNs to structural attacks to date.

Research paper accepted by Applied Mathematical Modelling

In recent years, multi-agent deep reinforcement learning has progressed rapidly as reflected by its increasing adoptions in industrial applications. This paper proposes a Guided Probabilistic Reinforcement Learning (Guided-PRL) model to tackle maintenance scheduling of multi-component systems in the presence of uncertainty with the goal of minimizing the overall life-cycle cost. The proposed Guided-PRL is deeply rooted in the Actor-Critic (AC) scheme. Since traditional AC falls short in sampling efficiency and suffers from getting stuck in local minima in the context of multi-agent reinforcement learning, it is thus challenging for the actor network to converge to a solution of desirable quality even when the critic network is properly configured. To address these issues, we develop a generic framework to facilitate effective training of the actor network, and the framework consists of environmental reward modeling, degradation formulation, state representation, and policy optimization. The convergence speed of the actor network is significantly improved with a guided sampling scheme for environment exploration by exploiting rules-based domain expert policies. To handle data scarcity, the environmental modeling and policy optimization are approximated with Bayesian models for effective uncertainty quantification. The Guided-PRL model is evaluated using the simulations of a 12-component system as well as GE90 and CFM56 engines. Compared with four alternative deep reinforcement learning schemes, the Guided-PRL lowers life-cycle cost by 34.92% to 88.07%. In comparison with rules-based expert policies, the Guided-PRL decreases the life-cycle cost by 23.26% to 51.36%.

Research paper accepted by Journal of Manufacturing Process

Selective laser melting (SLM) is a commonly used technique in additive manufacturing to produce metal components with complex geometries and high precision. However, the poor process reproducibility and unstable product reliability has hindered its wide adoption in practice. Hence, there is a pressing demand for in-situ quality monitoring and real-time process control. In this paper, a feature-level multi-sensor fusion approach is proposed to combine acoustic emission signals with photodiode signals to realize in-situ quality monitoring for intelligence-driven production of SLM. An off-axial in-situ monitoring system featuring a microphone and a photodiode is developed to capture the process signatures during the building process. According to the 2D porosity and 3D density measurements, the collected acoustic and optical signals are grouped into three categories to indicate the quality of the produced parts. In consideration of the laser scanning information, an approach to transform the 1D signal to 2D image is developed. The converted images are then used to train a convolutional neural network so as to extract and fuse the features derived from the two individual sensors. In comparison with several baseline models, the proposed multi-sensor fusion approach achieves the best performance in quality monitoring.