Dr. Xiaoge Zhang delivered a talk on “Safety assessment and risk analysis of complex systems under uncertainty” at Nanjing University, China
This talk showcases two different strategies to assess and analyze the safety of air transportation system. In the first place, considering the rich information in the historical aviation accident events, we analyzed the accidents reported in the National Transporation Safety Board (NTSB) over the past two decades, and developed a large-scale Bayesian network to model the causal relationships among a variety of factors contributing to the occurrence of aviation accidents. The construction of Bayesian network greatly facilitates the root cause diagnosis and outcome analysis of aviation accident. Next, we analyze how to leverage deep learning to forecast flight trajectory. Using Bayesian neural network, we fully characterize the effect of exogenous variables on the flight trajectory. The predicted trajectory is then expanded to multiple flights, and used to assess safety based on horizontal and vertical separation distance between two flights, thus enabling real-time monitoring of in-flight safety.